
GEOCHEMICAL INVESTIGATION AND MODELLING OF AN ACID PIT LAKE FROM A HIGH SULFIDATION ORE DEPOSIT: KIRKI, NE GREECE
Author(s) -
Stavros Triantafyllidis,
Nikos Skarpelis
Publication year - 2017
Publication title -
deltio tīs ellīnikīs geōlogikīs etaireias/deltio tīs ellīnikīs geōlogikīs etaireias
Language(s) - English
Resource type - Journals
eISSN - 2529-1718
pISSN - 0438-9557
DOI - 10.12681/bgsg.11642
Subject(s) - geology , geochemistry , acid mine drainage , weathering , jarosite , sulfide minerals , pyrite , goethite , mineral , gypsum , environmental chemistry , chemistry , paleontology , organic chemistry , adsorption
Open pit mining of a high sulfidation epithermal type deposit at Kirki (Thrace, NE Greece) resulted in the formation of an acid pit lake by infilling of the open cast by rain and drainage waters after mine closure. The acidic and oxidative pit lake waters show high concentrations of trace metals largely due to the high toxic metals content of the ore, the limited buffering capacity of host rocks and the direct exposure of the ore zone to weathering. The floor of the pit lake is covered by a finegrained mineral precipitate that comprises mainly detrital minerals, originating from erosion of the rocks exposed on the walls of the open pit. Secondary anglesite, several species of the jarosite-group, rozenite, melanterite, gypsum, bukovskyite, beaverite, scorodite and minor goethite are also detected. The mineral precipitate presents significant heavy metal content indicating effective removal of metals from the acidic waters. The speciation/mass transfer computer code PHREEQC-2 and the MINTEQ database were employed for geochemical modelling of the equilibrium between the acidic pit lake waters and the secondary phases of the mineral precipitate.