
Characteristics of Oscillating Flames in a Coaxial Confined Jet
Author(s) -
Min Suk,
Suk Ho Chung
Publication year - 2010
Publication title -
international journal of spray and combustion dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.614
H-Index - 16
eISSN - 1756-8285
pISSN - 1756-8277
DOI - 10.1260/1756-8277.2.4.357
Subject(s) - strouhal number , diffusion flame , mechanics , oscillation (cell signaling) , premixed flame , jet (fluid) , laminar flame speed , nozzle , materials science , entrainment (biomusicology) , buoyancy , flame speed , physics , combustion , thermodynamics , chemistry , reynolds number , turbulence , acoustics , combustor , rhythm , biochemistry , organic chemistry
Flame characteristics when a non-premixed n-butane jet is ejected into a coaxial cylindrical tube are investigated experimentally. Flame stability depends mainly on the characteristics of flame propagation as well as air entrainment which depend on the jet momentum and on the distance between the nozzle exit and the base of a confined tube. As flow rate increases, the flame lifts off from a nozzle attached diffusion flame and a stationary lifted flame can be stabilized. The liftoff height increases nearly linearly with the average velocity at the nozzle exit. The lifted flame has a tribrachial flame structure, which consists of a rich premixed flame, a lean premixed flame, and a diffusion flame, all extending from a single location. As flow rate further increases, periodically oscillating flames are observed inside the confined tube. Once flame oscillation occurs, the flame undergoes relatively stable oscillation such that it has nearly constant oscillation amplitude and frequency. The criteria of flame oscillation are mapped as functions of nozzle diameter, the distance between nozzle and tube, and jet velocity. This type of flame oscillation can be characterized by Strouhal number in terms of flame oscillation amplitude, frequency, and jet velocity. Buoyancy driven flame oscillation which is one of the viable mechanism for flame oscillation is modeled and the results agrees qualitatively with experimental results, suggesting that the oscillation is due to periodic blowoff and flashback under the influence of buoyancy