z-logo
open-access-imgOpen Access
Learning under Diverse World Views: Model-Based Inference
Author(s) -
George J. Mailath,
Larry Samuelson
Publication year - 2020
Publication title -
american economic review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 16.936
H-Index - 297
eISSN - 1944-7981
pISSN - 0002-8282
DOI - 10.1257/aer.20190080
Subject(s) - inference , computer science , economics , mathematical economics , complete information , artificial intelligence
People reason about uncertainty with deliberately incomplete models. How do people hampered by different, incomplete views of the world learn from each other? We introduce a model of "model-based inference." Model-based reasoners partition an otherwise hopelessly complex state space into a manageable model. Unless the differences in agents' models are trivial, interactions will often not lead agents to have common beliefs or beliefs near the correct-model belief. If the agents' models have enough in common, then interacting will lead agents to similar beliefs, even if their models also exhibit some bizarre idiosyncrasies and their information is widely dispersed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom