Premium
Impact study of the 2003 North Atlantic THORPEX Regional Campaign
Author(s) -
Fourrié Nadia,
Marchal David,
Rabier Florence,
Chapnik Bernard,
Desroziers Gerald
Publication year - 2006
Publication title -
quarterly journal of the royal meteorological society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.744
H-Index - 143
eISSN - 1477-870X
pISSN - 0035-9009
DOI - 10.1256/qj.05.31
Subject(s) - context (archaeology) , data assimilation , geostationary orbit , environmental science , meteorology , troposphere , climatology , geostationary operational environmental satellite , satellite , geography , geology , engineering , archaeology , aerospace engineering
Abstract An experiment took place during autumn 2003 with the aim of testing the feasibility of an operational targeting of observations over the North Atlantic Ocean in the context of the international programme THORPEX. The purpose of this paper is to evaluate the impact of these additional observations in the French operational model ARPEGE during the last three weeks of the campaign. Results are shown for large regions over and around the North Atlantic Ocean and for specific verification areas. Over Europe, the addition of observations is slightly beneficial for the forecast, mostly in the low troposphere over wide areas and above 100 hPa. However, the impact of extra data is more significant but also more mixed for the dedicated verification areas: they are case, forecast‐range and level dependent. In addition, the information content is studied with the Degrees of Freedom for Signal (DFS) for the evaluation of the observation impact on the analysis of one case of December 2003. Firstly, the variations of the DFS have been illustrated in a simplified data assimilation system. It has been found for that case that satellite data have the most important global contribution to the overall analysis, especially the humidity sensitive infrared radiances. For the conventional data, the wind measurements of the aircraft and from the geostationary satellites are the most informative. For the targeted area, the data from aircraft and the dropsondes have the largest DFS. It has been noted that the DFS of the dropsondes located in the sensitivity maximum is larger than the other one even if there is no link between the DFS and the forecast. However, the impact of the dropsondes grows with respect to the forecast range and leads to an improvement of the forecast for this case. Copyright © 2006 Royal Meteorological Society