z-logo
open-access-imgOpen Access
Aerial course stabilization is impaired in motion-blind flies
Author(s) -
Maria-Bianca Leonte,
Aljoscha Leonhardt,
Alexander Borst,
Alex S. Mauss
Publication year - 2021
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.242219
Subject(s) - motion (physics) , course (navigation) , computer vision , motion perception , artificial intelligence , computer science , biology , physics , astronomy
Visual motion detection is among the best understood neuronal computations. As extensively investigated in tethered flies, visual motion signals are assumed to be crucial to detect and counteract involuntary course deviations. During free flight, however, course changes are also signalled by other sensory systems. Therefore, it is as yet unclear to what extent motion vision contributes to course control. To address this question, we genetically rendered flies motion-blind by blocking their primary motion-sensitive neurons and quantified their free-flight performance. We found that such flies have difficulty maintaining a straight flight trajectory, much like unimpaired flies in the dark. By unilateral wing clipping, we generated an asymmetry in propulsive force and tested the ability of flies to compensate for this perturbation. While wild-type flies showed a remarkable level of compensation, motion-blind animals exhibited pronounced circling behaviour. Our results therefore directly confirm that motion vision is necessary to fly straight under realistic conditions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom