Chimeric human opsins as optogenetic light sensitisers
Author(s) -
Doron Hickey,
Wayne I. L. Davies,
Steven Hughes,
Jessica Rodgers,
Navamayooran Thavanesan,
Robert E. MacLaren,
Mark W. Hankins
Publication year - 2021
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.240580
Subject(s) - opsin , melanopsin , rhodopsin , photopigment , optogenetics , visual phototransduction , biology , microbiology and biotechnology , intracellular , intrinsically photosensitive retinal ganglion cells , retina , neuroscience , biophysics , retinal , biochemistry , retinal ganglion cell
Human opsin-based photopigments have great potential as light-sensitisers, but their requirement for phototransduction cascade-specific second messenger proteins may restrict their functionality in non-native cell types. In this study, eight chimeric human opsins were generated consisting of a backbone of either a rhodopsin (RHO) or long-wavelength-sensitive (LWS) opsin and intracellular domains from Gq/11-coupled human melanopsin. Rhodopsin/melanopsin chimeric opsins coupled to both Gi and Gq/11 pathways. Greater substitution of the intracellular surface with corresponding melanopsin domains generally showed greater Gq/11 activity with a decrease in Gi activation. Unlike melanopsin, rhodopsin and rhodopsin/melanopsin chimeras were dependent upon exogenous chromophore to function. By contrast, wild-type LWS opsin and LWS opsin/melanopsin chimeras showed only weak Gi activation in response to light, whilst Gq/11 pathway activation was not detected. Immunocytochemistry (ICC) demonstrated that chimeric opsins with more intracellular domains of melanopsin were less likely to be trafficked to the plasma membrane. This study demonstrates the importance of Gα coupling efficiency to the speed of cellular responses and created human opsins with a unique combination of properties to expand the range of customised optogenetic biotools for basic research and translational therapies.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom