
Artificial selection for schooling behaviour and its effects on associative learning abilities
Author(s) -
Regina VegaTrejo,
Annika Boussard,
Lotta Wallander,
Elisa Estival,
Séverine D. Buechel,
Alexander Kotrschal,
Niclas Kolm
Publication year - 2020
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.235093
Subject(s) - associative learning , cognition , associative property , psychology , cognitive psychology , replicate , selection (genetic algorithm) , comparative cognition , artificial intelligence , computer science , neuroscience , statistics , mathematics , pure mathematics
The evolution of collective behaviour has been proposed to have important effects on individual cognitive abilities. Yet, in what way they are related remains enigmatic. In this context, the ‘distributed cognition’ hypothesis suggests that reliance on other group members relaxes selection for individual cognitive abilities. Here, we test how cognitive processes respond to evolutionary changes in collective motion using replicate lines of guppies (Poecilia reticulata) artificially selected for the degree of schooling behaviour (group polarization) with >15% difference in schooling propensity. We assessed associative learning in females of these selection lines in a series of cognitive assays: colour associative learning, reversal-learning, social associative learning, and individual and collective spatial associative learning. We found that control females were faster than polarization selected females at fulfilling a learning criterion only in the colour associative learning assay, but they were also less likely to reach a learning criterion in the individual spatial associative learning assay. Hence, although testing several cognitive domains, we found weak support for the distributed cognition hypothesis. We propose that any cognitive implications of selection for collective behaviour lie outside of the cognitive abilities included in food-motivated associative learning for visual and spatial cues.