z-logo
open-access-imgOpen Access
A motion compensation treadmill for untethered wood ants (Formica rufa): evidence for transfer of orientation memories from free-walking training
Author(s) -
Roman Goulard,
Cornelia Buehlmann,
Jeremy E. Niven,
Paul Graham,
Barbara Webb
Publication year - 2020
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.228601
Subject(s) - foraging , computer science , orientation (vector space) , communication , human–computer interaction , compensation (psychology) , artificial intelligence , simulation , computer vision , psychology , ecology , biology , mathematics , geometry , psychoanalysis
The natural scale of insect navigation during foraging makes it challenging to study under controlled conditions. Virtual reality and trackball setups have offered experimental control over visual environments while studying tethered insects, but potential limitations and confounds introduced by tethering motivates the development of alternative untethered solutions. In this paper, we validate the use of a motion compensator (or ‘treadmill’) to study visually driven behaviour of freely moving wood ants ( Formica rufa ). We show how this setup allows naturalistic walking behaviour and preserves foraging motivation over long time frames. Furthermore, we show that ants are able to transfer associative and navigational memories from classical maze and arena contexts to our treadmill. Thus, we demonstrate the possibility to study navigational behaviour over ecologically relevant durations (and virtual distances) in precisely controlled environments, bridging the gap between natural and highly controlled laboratory experiments.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom