z-logo
open-access-imgOpen Access
How do C. elegans worms survive in highly viscous habitats?
Author(s) -
Yuki Suzuki,
Kenji Kikuchi,
Keiko Numayama-Tsuruta,
Takuji Ishikawa
Publication year - 2020
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.224691
Subject(s) - caenorhabditis elegans , viscosity , biology , bacteria , ecology , food science , zoology , microbiology and biotechnology , genetics , physics , thermodynamics , gene
The nematode Caenorhabditis elegans is a filter feeder, which lives in various viscous habitats such as soil, the intestines of slugs, and rotting materials such as fruits and stems. C. elegans draws in suspensions of bacteria and separates bacteria from water using the pharyngeal pump. Although these worms often live in highly viscous habitats, it is still unclear how they survive in these environments by eating bacteria. In this study, we investigated the effects of suspension viscosity on the survival rate of malnutritioned worms by combining live imaging and scaling analyses. We found that survival rate decreased with increases in viscosity because the high viscosity suppressed the amount of food ingested. The same tendency was found in two feeding defective mutants, eat-6(ad467) and eat-6(ad997). We also found that the high viscosity weakened pump function, but the velocities in the pharynx were not zero, even in the most viscous suspensions. Finally, we estimated the amount of ingested food using scaling analyses, which provided a master curve of the experimental survival rates. These results illustrate that the survival rate of C. elegans worms is strongly dependent on the ingested bacteria per unit time associated with physical environments, such as the viscosity of food suspensions and the number density of bacteria. The pump function of the C. elegans pharynx is not completely lost even in fluids that have 105 times higher viscosity than water, which may contribute to their ability to survive around the world in highly viscous environments.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here