z-logo
open-access-imgOpen Access
Strain transformation: Enhancement of invertebrate memory in a new rearing environment
Author(s) -
Cailin M. Rothwell,
Ken Lukowiak
Publication year - 2019
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.205112
Subject(s) - strain (injury) , invertebrate , transformation (genetics) , biology , zoology , communication , ecology , psychology , anatomy , genetics , gene
Memory formation is influenced by a variety of factors, including the environmental conditions in which an organism is reared. Here, we studied the memory-forming ability of the lab-bred B-strain of Lymnaea following a change in their rearing environment from Brock University to the University of Calgary. We have previously demonstrated that this move enhances memory-forming ability and here we studied the magnitude of this phenotypic change. Once reared to adulthood at the University of Calgary, the B-strain animals were first tested to determine how many training sessions were required for the formation of long-term memory (LTM) to occur. Following this change in environment, the B-strain transformed into a ‘smart’ lab-bred strain requiring only a single 0.5 h session to form LTM. Next, we tested whether exposure to physiologically relevant stressors would block the formation of LTM in this ‘transformed’ B-strain, as this obstruction has previously been observed in ‘smart’ snails collected from the wild. Interestingly, neither stressor tested in this study perturbed memory formation in this ‘transformed’ lab-bred strain. Additionally, both the ‘smart’ memory phenotype, as well as the increased stress resiliency, were observed in the second generation of ‘transformed’ B-strain at both the juvenile and adult stages. This suggests that a change in rearing environment can contribute to the memory-forming ability of lab-bred Lymnaea.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom