z-logo
open-access-imgOpen Access
Tissue-specific telomere dynamics in hibernating arctic ground squirrels (Urocitellus parryii)
Author(s) -
Sara M. Wilbur,
Brian M. Barnes,
Alexander S. Kitaysky,
Cory T. Williams
Publication year - 2019
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.204925
Subject(s) - telomere , arctic , biology , the arctic , dynamics (music) , hibernation (computing) , zoology , ecology , oceanography , geology , physics , dna , genetics , mathematics , state (computer science) , algorithm , acoustics
Hibernation is used by a variety of mammals to survive seasonal periods of resource scarcity. Reactive oxygen species (ROS) released during periodic rewarming throughout hibernation, however, may induce oxidative damage in some tissues. Telomeres, which are the terminal sequences of linear chromosomes, may shorten in the presence of ROS, and thus the telomere length of an individual reflects the degree of accrued oxidative damage. This study quantified telomere length dynamics throughout hibernation in arctic ground squirrels (Urocitellus parryii). We hypothesized that telomere dynamics are tissue-specific and predicted that telomere shortening would be most pronounced in brown adipose tissue (BAT), the organ that directly supports non-shivering thermogenesis during arousals. We used qPCR to determine relative telomere length (RTL) in DNA extracted from liver, heart, skeletal muscle (SM), and BAT of 45 juvenile and adult animals sampled either at mid- or late hibernation. Age did not have a significant effect on RTL in any tissue. At mid-hibernation, RTL of juvenile females was longer in BAT and SM than in liver and heart. In juvenile females, RTL in BAT and SM, but not in liver and heart, was shorter at late hibernation than at mid-hibernation. At late hibernation, juvenile males had longer RTL in BAT than juvenile females, perhaps due to the naturally shorter hibernation duration of AGS males. Finally, BAT RTL at late hibernation negatively correlated with arousal frequency. Overall, our results suggest that, in a hibernating mammal, telomere shortening is tissue-specific and that metabolically active tissues might incur higher molecular damage.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here