Testing the parasite mass burden effect on host behaviour alteration in the Schistocephalus-stickleback system
Author(s) -
Lucie Grécias,
Julie Valentin,
Nadia AubinHorth
Publication year - 2018
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.174748
Subject(s) - gasterosteus , stickleback , three spined stickleback , biology , parasite hosting , host (biology) , intermediate host , zoology , ecology , fish <actinopterygii> , fishery , world wide web , computer science
Many parasites with complex life cycles modify their intermediate host's behaviour, which has been proposed to increase transmission to their definitive host. This behavioural change could result from the parasite actively manipulating its host, but could also be explained by a mechanical effect, where the parasite's physical presence affects host behaviour. We created an artificial internal parasite using silicone injections in the body cavity to test this mechanical effect hypothesis. We used the Schistocephalus solidus - threespine stickleback (Gasterosteus aculeatus) system, as this cestode can reach up to 92% of its fish host mass. Our results suggest that the mass burden brought by this macroparasite alone is not sufficient to cause behavioural changes in its host. Furthermore, our results show that wall-hugging (thigmotaxis), a measure of anxiety in vertebrates, is significantly reduced in Schistocephalus-infected sticklebacks, unveiling a new altered component of behaviour that may result from manipulation by this macroparasite.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom