z-logo
open-access-imgOpen Access
Parameters of motion vision in low-light in the hawkmoth,Manduca sexta
Author(s) -
Kalyanasundaram Parthasarathy,
Mark A. Willis
Publication year - 2018
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.173344
Subject(s) - manduca sexta , luminance , crepuscular , visual field , optics , physics , nocturnal , biology , sphingidae , motion perception , communication , neuroscience , psychology , ecology , larva , perception
The hawkmoth Manduca sexta, is nocturnally active, beginning its flight activity at sunset, and executing rapid controlled maneuvers to search for food and mates in dim light conditions. This moth's visual system has been shown to trade off spatial and temporal resolution for increased sensitivity in these conditions. The study presented here uses tethered flying moths to characterize the flight performance envelope of M. sexta's wide-field-motion-triggered steering response in low light conditions by measuring attempted turning in response to wide-field visual motion. Moths were challenged with a horizontally oscillating sinusoidal grating at a range of luminance, from daylight to starlight conditions. The impact of luminance on response to a range of temporal frequencies and spatial wavelengths was assessed across a range of pattern contrasts. The optomotor response decreased as a function of decreasing luminance, and the lower limit of the moth's contrast sensitivity was found to be between 1% to 5%. The preferred spatial frequency for M. sexta increased from 0.06 to 0.3 cycles/degree as the luminance decreased, but the preferred temporal frequency remained stable at 4.5 Hz across all conditions. The relationship between the optomotor response time to the temporal frequency of the pattern movement did not vary significantly with luminance levels. Taken together, these results suggest that the behavioral response to wide-field visual input in M. sexta is adapted to operate during crepuscular to nocturnal luminance levels, and the decreasing light levels experienced during that period changes visual acuity and does not affect their response time significantly.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here