z-logo
open-access-imgOpen Access
Functional classification of gill ionocytes and spatiotemporal changes in their distribution after transfer from seawater to fresh water in Japanese seabass
Author(s) -
Mayu Inokuchi,
Masahiro Nakamura,
Hiroshi Miyanishi,
Junya Hiroi,
Toyoji Kaneko
Publication year - 2017
Publication title -
journal of experimental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.367
H-Index - 185
eISSN - 1477-9145
pISSN - 0022-0949
DOI - 10.1242/jeb.167320
Subject(s) - cotransporter , chemistry , gill , immunofluorescence , microbiology and biotechnology , antibody , biology , fishery , immunology , sodium , organic chemistry , fish <actinopterygii>
Spatiotemporal changes in branchial ionocyte distribution were investigated following transfer from seawater (SW) to fresh water (FW) in Japanese seabass. The mRNA expression levels of cystic fibrosis transmembrane conductance regulator (CFTR) and Na+/K+/2Cl− cotransporter 1a (NKCC1a) in the gills rapidly decreased after transfer to FW, whereas Na+/H+ exchanger 3 (NHE3) and Na+/Cl− cotransporter 2 (NCC2) expressions were upregulated following the transfer. By quadruple-color whole-mount immunofluorescence staining with anti-Na+/K+-ATPase, anti-NHE3, anti-CFTR and T4 (anti-NKCC1a/NCC2) antibodies, we classified ionocytes into one SW-type and two FW-types; NHE3 cell and NCC2 cell. Time-course observation after transfer revealed an intermediate type between SW-type and FW-type NHE3 ionocytes, suggesting functional plasticity of ionocytes. Finally, on the basis of the ionocyte classification of Japanese seabass, we observed the location of ionocyte subtypes on frozen sections of the gill filaments stained by triple-color immunofluorescence staining. Our observation indicated that SW-type ionocytes transformed into FW-type NHE3 ionocytes and at the same time shifted their distribution from filaments to lamellae. On the other hand, FW-specific NCC2 ionocytes appeared mainly in the filaments. Taken together, these findings indicated that ionocytes originated from undifferentiated cells in the filaments and expanded their distribution to the lamellae during FW acclimation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here