z-logo
open-access-imgOpen Access
Transient accumulation and bidirectional movement of KIF13B in primary cilia
Author(s) -
Alice Dupont Juhl,
Zeinab Anvarian,
Stefanie Kuhns,
Julia Berges,
Jens Andersen,
Daniel Wüstner,
Lotte B. Pedersen
Publication year - 2022
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.259257
Subject(s) - kinesin , biology , cilium , intraflagellar transport , microtubule , dynein , microbiology and biotechnology , ciliogenesis , motor protein , axoplasmic transport , organelle , flagellum , genetics , gene
Primary cilia are microtubule-based sensory organelles whose assembly and function rely on the conserved bidirectional intraflagellar transport (IFT) system, which is powered by anterograde kinesin-2 and retrograde cytoplasmic dynein 2 motors. Nematodes additionally employ a cell type-specific kinesin-3 motor, KLP-6, which moves within cilia independently of IFT and regulates ciliary content and function. Here we provide evidence that a KLP-6 homolog, KIF13B, undergoes bursts of bidirectional movement within primary cilia of cultured immortalized human retinal pigment epithelial (hTERT-RPE1) cells. Anterograde and retrograde intraciliary velocities of KIF13B were similar to those of IFT (IFT172-eGFP), but intraciliary movement of KIF13B required its own motor domain and appeared to be cell-type specific. Our work provides the first demonstration of motor-driven, intraciliary movement by a vertebrate kinesin other than kinesin-2 motors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom