Drp1 regulates transcription of ribosomal protein genes in embryonic hearts
Author(s) -
Qiancong Zhao,
Shun Yan,
Jin Lu,
Danitra Parker,
Huiying Wu,
Qianchuang Sun,
David K. Crossman,
Shanrun Liu,
Qin Wang,
Hiromi Sesaki,
Kasturi Mitra,
Kexiang Liu,
Kai Jiao
Publication year - 2022
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.258956
Subject(s) - biology , mitochondrial fission , microbiology and biotechnology , mitochondrial fusion , dnm1l , mitochondrial dna , embryonic stem cell , mfn2 , mitochondrion , genetics , gene
Mitochondrial dysfunction causes severe congenital cardiac abnormalities and prenatal/neonatal lethality. The lack of sufficient knowledge regarding how mitochondrial abnormalities affect cardiogenesis poses a major barrier for the development of clinical applications that target mitochondrial deficiency-induced inborn cardiomyopathies. Mitochondrial morphology, which is regulated by fission and fusion, plays a key role in determining mitochondrial activity. Dnm1l encodes a dynamin-related GTPase, Drp1, which is required for mitochondrial fission. To investigate the role of Drp1 in cardiogenesis during the embryonic metabolic shift period, we specifically inactivated Dnm1l in second heart field-derived structures. Mutant cardiomyocytes in the right ventricle (RV) displayed severe defects in mitochondrial morphology, ultrastructure and activity. These defects caused increased cell death, decreased cell survival, disorganized cardiomyocytes and embryonic lethality. By characterizing this model, we reveal an AMPK-SIRT7-GABPB axis that relays the reduced cellular energy level to decrease transcription of ribosomal protein genes in cardiomyocytes. We therefore provide the first genetic evidence in mouse that Drp1 is essential for RV development. Our research provides further mechanistic insight into how mitochondrial dysfunction causes pathological molecular and cellular alterations during cardiogenesis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom