
Tetrahymena Poc5 is a transient basal body component that is important for basal body maturation
Author(s) -
Westley Heydeck,
Brian A. Bayless,
Alexander J. Stemm-Wolf,
Eileen O’Toole,
Amy S. Fabritius,
Courtney Ozzello,
Mariguyen,
Mark Winey
Publication year - 2020
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.240838
Subject(s) - ciliogenesis , tetrahymena , biology , basal body , cilium , microbiology and biotechnology , centriole , organelle , microtubule , intraflagellar transport , cytoskeleton , genetics , mutant , cell , gene , flagellum
Basal bodies (BBs) are microtubule-based organelles that template and stabilize cilia at the cell surface. Centrins ubiquitously associate with BBs and function in BB assembly, maturation, and stability. Human POC5 (hPOC5) is a highly conserved centrin-binding protein that binds centrins through Sfi1p-like repeats and is required for building full-length, mature centrioles. Here, we use the BB-rich cytoskeleton of Tetrahymena thermophila to characterize Poc5 BB functions. Tetrahymena Poc5 (TtPoc5) uniquely incorporates into assembling BBs and is then removed from mature BBs prior to ciliogenesis. Complete genomic knockout of TtPOC5 leads to a significantly increased production of BBs yet a markedly reduced ciliary density, both of which are rescued by reintroduction of TtPoc5. A second Tetrahymena POC5-like gene, SFR1, is similarly implicated in modulating BB production. When TtPOC5 and SFR1 are co-deleted, cell viability is compromised, and levels of BB overproduction are exacerbated. Overproduced BBs display defective transition zone formation and a diminished capacity for ciliogenesis. This study uncovers a requirement for Poc5 in building mature BBs, providing a possible functional link between hPOC5 mutations and impaired cilia.