z-logo
open-access-imgOpen Access
A homeostatic mechanism rapidly corrects aberrant nucleocytoplasmic ratios maintaining nuclear size
Author(s) -
Helena Cantwell,
Paul Nurse
Publication year - 2019
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.235911
Subject(s) - biology , microbiology and biotechnology , biogenesis , homeostasis , nuclear transport , cell nucleus , nuclear pore , biophysics , nucleus , biochemistry , gene
Nuclear size scales with cell size across a wide range of cell types. The mechanism by which this scaling is maintained in growing cells remains unclear. Here, we investigate the mechanism of nuclear size homeostasis in the simple eukaryote fission yeast, by monitoring the recovery of aberrant nuclear volume to cell volume (N/C) ratios following perturbation. We demonstrate that both high and low N/C ratios correct rapidly, maintaining nuclear size homeostasis. We assess the kinetics of nuclear and cellular growth and of N/C ratio correction, and demonstrate that nuclear and cellular growth rates are not directly coupled. We propose that the mechanism underlying nuclear size homeostasis involves multiple limiting factors implicated in processes including nucleocytoplasmic transport, lipid biogenesis and RNA processing. We speculate that these link cellular size increases to changes in nuclear contents, which in turn lead to changes in nuclear membrane surface area. Our study reveals that there is rapid nuclear size homeostasis in cells, informing understanding of nuclear size control and size homeostasis of other membrane-bound organelles.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here