z-logo
open-access-imgOpen Access
Cross-talk between TGF-β and PDGFRα signaling pathways regulates the fate of stromal fibro–adipogenic progenitors
Author(s) -
Osvaldo Contreras,
Meilyn Cruz-Soca,
Marine Théret,
H. S. Soliman,
Lin Tung,
Elena Groppa,
Fábio Rossi,
Enrique Brandan
Publication year - 2019
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.232157
Subject(s) - biology , adipogenesis , microbiology and biotechnology , stromal cell , transforming growth factor , signal transduction , progenitor cell , cancer research , mesenchymal stem cell , stem cell
Fibro/adipogenic progenitors (FAPs) are tissue-resident mesenchymal stromal cells (MSCs) required for proper skeletal muscle development, regeneration, and maintenance. However, FAPs are also responsible for fibro-fatty scar deposition following chronic damage. We aimed to study a functional cross-talk between TGF-β and PDGFRα signaling pathways in FAPs’ fate. Here, we show that the number of FAPs correlates with TGF-β levels and with extracellular matrix deposition during regeneration and repair. Interestingly, the expression of PDGFRα changed dynamically in the stromal/fibroblast lineage after injury. Furthermore, PDGFRα-dependent immediate early gene expression changed during regeneration and repair. We also found that TGF-β signaling reduces PDGFRα expression in FAPs, mouse dermal fibroblasts, and in two related mesenchymal/fibroblast cell lines. Moreover, TGF-β promotes myofibroblast differentiation of FAPs but inhibits their adipogenicity. Accordingly, TGF-β impairs the expression of PDGFRα-dependent immediate early genes in a TGF-BR1-dependent manner. Finally, pharmacological inhibition of PDGFRα activity with AG1296 impaired TGF-β-induced extracellular matrix remodeling, Smad2 signaling, myofibroblast differentiation, and migration of MSCs. Thus, our work establishes a functional cross-talk between TGF-β and PDGFRα signaling pathways that is involved in regulating the biology of FAPs/MSCs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom