z-logo
open-access-imgOpen Access
Genome-wide identification of alternative splicing events that regulate protein transport across the secretory pathway
Author(s) -
Alexander Neumann,
Magdalena Schindler,
Didrik Olofsson,
Ilka Wilhelmi,
Annette Schürmann,
Florian Heyd
Publication year - 2019
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.230201
Subject(s) - biology , identification (biology) , computational biology , genome , alternative splicing , rna splicing , genetics , evolutionary biology , secretory protein , gene , ecology , exon , rna
Alternative splicing (AS) strongly increases proteome diversity and functionality in eukaryotic cells. Protein secretion is a tightly-controlled process, especially in a tissue-specific and differentiation-dependent manner. While previous work has focussed on transcriptional and post-translational regulatory mechanisms, the impact of AS on the secretory pathway remains largely unexplored. Here we integrate a published screen for modulators of protein transport and RNA-Seq analyses to identify over 200 AS events as secretion regulators. We confirm that splicing events along all stages of the secretory pathway regulate the efficiency of membrane trafficking using Morpholinos and CRISPR/Cas9. We furthermore show that these events are highly tissue-specific and adapt the secretory pathway during T-cell activation and adipocyte differentiation. Our data substantially advance the understanding of AS functionality, add a new regulatory layer to a fundamental cell biological process and provide a resource of alternative isoforms that control the secretory pathway.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom