MAGEA1 inhibits the expression of BORIS via increased promoter methylation
Author(s) -
Jizhong Zhao,
Yueqing Wang,
Qianjin Liang,
Yan Xu,
Jianli Sang
Publication year - 2018
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.218628
Subject(s) - biology , ctcf , dna methylation , microbiology and biotechnology , bisulfite sequencing , psychological repression , methylation , cancer cell , cancer research , repressor , promoter , gene , gene expression , cancer , genetics , enhancer
Melanoma-associated antigen A1 (MAGEA1) and BORIS are members of the cancer testis antigens (CTA) family. Their functions and expression regulation mechanisms are not fully understood. In this study, we revealed new functions and regulatory mechanisms of MAGEA1 and BORIS in breast cancer cells, which were investigated in parental and genetically manipulated breast cancer cells via gene overexpression or siRNA interference-mediated down-regulation. We identified the interaction between MAGEA1 and CTCF, which was required for the binding of MAGEA1 to BORIS promoter and critical for the recruitment of DNMT3a. A protein complex containing MAGEA1, CTCF and DNMT3a will be formed before or after the conjunction with BORIS promoter. The binding of this complex to the BORIS promoter accounts for the hypermethylation and repression of BORIS expression, which results in cell death in the breast cancer cell lines tested. Multiple approaches are employed, including co-IP, GST-pull down, co-localization, cell death analyses using the Annexin V-FITC/PI double staining and caspase3 activation assays, ChIP and bisulfite sequencing PCR assays for methylation. These results have implications in the development of strategies in CTA-based immune therapeutics.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom