
APC/CFzr regulates cardiac and myoblast cell numbers and plays a crucial role during myoblast fusion
Author(s) -
Maik Drechsler,
Heiko Meyer,
Ariane C. Wilmes,
Achim Paululat
Publication year - 2018
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.209155
Subject(s) - biology , myocyte , microbiology and biotechnology , cell fusion , cell , genetics
Somatic muscles are formed by the iterative fusion of myoblasts into muscle fibres. This process is driven by the recurrent recruitment of proteins to the cell membrane to induce F-actin nucleation at the fusion site. Although various proteins involved in myoblast fusion have been identified, knowledge about their sub-cellular regulation is rather elusive. We identified the anaphase-promoting complex (APC/C) adaptor Fizzy related (Fzr) as an essential regulator of heart and muscle development. We show that APC/CFzr regulates the fusion of myoblasts as well as mitotic exit of pericardial cells, cardioblasts and myoblasts. Surprisingly, over-proliferation is not causative for the observed fusion defects. Instead, fzr mutants exhibit smaller F-actin foci at the fusion site, and display reduced membrane breakdown between adjacent myoblasts. We show that lack of APC/CFzr causes the accumulation and mislocalisation of Rols and Duf, two proteins involved in the fusion process. Duf seems to serve as direct substrate of the APC/CFzr, and its destruction depends on the presence of distinct degron sequences. These novel findings indicate that protein destruction and turnover constitute major events during myoblast fusion.