
Five steps to form neural rosettes: structure and function
Author(s) -
Hana Hříbková,
Marta Grabiec,
Dobromila Klemová,
Iva Slaninová,
Yin-Biao Sun
Publication year - 2018
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.206896
Subject(s) - biology , rosette (schizont appearance) , cytoskeleton , microbiology and biotechnology , neural plate , apical constriction , neurogenesis , neural development , neural stem cell , morphogenesis , anatomy , embryogenesis , embryo , stem cell , cell , biochemistry , immunology , gene
Neural rosette formation is a critical morphogenetic process during neural development, whereby neural stem cells are enclosed in rosette niches to equipoise proliferation and differentiation. How neural rosettes form and provide a regulatory micro-environment remains to be elucidated. We employed the human embryonic stem cell-based neural rosette system to investigate the structural development and function of neural rosettes. Our study shows that neural rosette formation consists of 5 types of cell movements: intercalation, constriction, polarization, elongation, and lumen formation. Ca2+ signaling plays a pivotal role in the five steps by regulating the actions of the cytoskeletal complexes, ACTIN, MYOSIN II, and TUBULIN during intercalation, constriction, and elongation. These in turn control the polarizing elements, ZO-1, PARD3, and β-CATENIN during polarization and lumen formation in neural rosette formation. We further demonstrated that the dismantlement of neural rosettes, mediated by the destruction of cytoskeletal elements, promoted neurogenesis and astrogenesis prematurely, indicating that an intact rosette structure is essential for orderly neural development.