z-logo
open-access-imgOpen Access
Redox regulation of the yeast voltage-gated Ca2+ channel homolog Cch1p by glutathionylation of specific cysteine residues
Author(s) -
Avinash Chandel,
Anand Bachhawat
Publication year - 2017
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.202853
Subject(s) - biology , cysteine , thioredoxin , biochemistry , microbiology and biotechnology , protein subunit , glutathione , yeast , oxidative stress , enzyme , gene
CCH1, the yeast homolog of the pore-forming subunit α1 of the mammalian Voltage-gated calcium channel (VGCC) located on the plasma membrane mediates the redox-dependent influx of calcium. Cch1p is known to undergo both rapid activation (oxidative stress, high pH) and slow activation (ER stress, mating pheromone activation), but the mechanism of activation is not known. We demonstrate here that the fast activation, as well as the slow activation (tunicamycin or α-factor) is mediated through a common redox-dependant manner. Further, through mutational analysis of all 18 exposed cysteines in the Cch1p protein, we show that four of these mutants, C587A, C606A, C636A and C642A, which are clustered together in a common cytoplasmic loop region were functionally defective during both fast and slow activations and also showed reduced glutathionylation. These four cysteines are also conserved across phyla suggesting a conserved mechanism of activation. Investigations into the enzymes involved in the activation reveal that the yeast glutathione-s-transferase, Gtt1p is involved in the glutathionylation of Cch1p, while the thioredoxin, Trx2p plays a role in the Cch1p deglutathionylation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom