z-logo
open-access-imgOpen Access
Phagocytosis mediated by Yersinia invasin induces collagenase-1 expression in rabbit synovial fibroblasts through a proinflammatory cascade
Author(s) -
Erica Werner,
Farrah Kheradmand,
Ralph R. Isberg,
Zena Werb
Publication year - 2001
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.114.18.3333
Subject(s) - biology , proinflammatory cytokine , phagocytosis , collagenase , microbiology and biotechnology , yersinia , yersinia pseudotuberculosis , inflammation , immunology , bacteria , enzyme , biochemistry , virulence , genetics , gene
We show that the interaction of the Yersinia surface protein, invasin, with rabbit synovial fibroblasts mediates bead phagocytosis and induces expression of interleukin 1alpha (IL-1alpha), tumor necrosis factor-alpha (TNF-alpha) and MMP-1/collagenase-1 (CL-1). Presentation of invasin as a ligand on the surface of 4.5 microm beads induced phagocytosis and increased CL-1 expression 20-fold after 24 hours. By contrast, presentation of invasin as a spreading substrate did not induce CL-1 expression. CL-1 induction following phagocytosis of invasin-coated beads was mediated by a mechanism dependent on high-affinity binding to beta1 integrins and the function of the small GTPase RhoA. Expression of a function-perturbing mutant, RhoAN19, abrogated bead-induced CL-1 expression. RhoA activation coupled bead phagocytosis with signal transduction because expression of constitutively active mutant RhoV14 was sufficient to trigger CL-1 expression. The signal-transduction cascade elicited by bead phagocytosis triggered NFkappaB activation, stimulating a proinflammatory cellular response with transient increases in TNF-alpha production that peaked at 2 hours and induction of IL-1alpha that was sustained for at least 10 hours. Inhibition of IL-1alpha function by blocking antibodies or IL-1 receptor antagonist showed that IL-1alpha is the autocrine intermediary for subsequent CL-1 induction.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom