Polar localization of a dihydropyridine receptor on living Fucus zygotes
Author(s) -
Sidney L. Shaw,
Ralph S. Quatrano
Publication year - 1996
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.109.2.335
Subject(s) - biology , biophysics , receptor , calcium , cytochalasin d , fucus , biochemistry , microbiology and biotechnology , botany , cytoskeleton , cell , chemistry , organic chemistry , algae
We have used a fluorescently-labeled dihydropyridine (FL-DHP) to vitally stain living Fucus zygotes during the establishment of cell polarity. Localization of FL-DHP is primarily at the plasma membrane and FL-DHP binding is competitively blocked by an unlabeled dihydropyridine. Distribution of FL-DHP is initially symmetrical before fixation of the polar axis, but becomes asymmetrical in response to a unilateral light gradient. The distribution of FL-DHP receptors can be relocalized when the direction of the photopolarizing stimulus is changed. Treatment of cells with cytochalasin B prior to axis fixation reversibly prevents localization of FL-DHP receptors. Observation of FL-DHP labeling by time-lapse fluorescence microscopy indicates that the existing receptors are redistributed during polar axis formation. The asymmetric distribution of FL-DHP receptors coincides temporally and spatially with increased local intracellular calcium ion concentrations, as measured by calcium green dextran. Based on the site, timing, photo-reversibility, and actin dependence of the asymmetric localization of FL-DHP receptors, we conclude that FL-DHP is a vital probe for the later stage of polar axis formation in Fucus zygotes. Furthermore, we propose that FL-DHP receptors correspond to ion channels that are transported to the future site of polar growth to create the changes in local calcium concentration required for polarity establishment.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom