Open Access
Circulating Fibroblast Growth Factor-2 precipitates HIV-nephropathy in mice
Author(s) -
Jharna R. Das,
Marina Jerebtsova,
Pingtao Tang,
Jinliang Li,
Jing Yu,
Patricio E. Ray
Publication year - 2021
Publication title -
disease models and mechanisms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.327
H-Index - 83
eISSN - 1754-8411
pISSN - 1754-8403
DOI - 10.1242/dmm.048980
Subject(s) - fibroblast growth factor , nephropathy , pathogenesis , fibroblast growth factor receptor 1 , biology , endocrinology , medicine , tyrosine kinase , kidney disease , cancer research , immunology , signal transduction , microbiology and biotechnology , receptor , diabetes mellitus
People of African ancestry living with the human immunodeficiency virus-1 (HIV-1) are at risk of developing HIV-associated nephropathy (HIVAN). Children with HIVAN frequently show high plasma fibroblast growth factor-2 (FGF-2) levels; however, the role of circulating FGF-2 in the pathogenesis of childhood HIVAN is unclear. Here, we explored how circulating FGF-2 affected the outcome of HIVAN in young HIV-Tg26 mice. Briefly, we demonstrated that FGF-2 was preferentially recruited in the kidneys of mice without pre-existing kidney disease, precipitating HIVAN by activating phosphorylated extracellular signal-regulated kinase (pERK) in renal epithelial cells, without inducing the expression of HIV-1 genes. Wild-type mice injected with recombinant adenoviral FGF-2 (rAd-FGF-2) vectors carrying a secreted form of human FGF-2 developed transient and reversible HIVAN-like lesions, including proteinuria and glomerular enlargement. HIV-Tg26 mice injected with rAd-FGF-2 vectors developed more-significant proliferative and pro-fibrotic inflammatory lesions, similar to those seen in childhood HIVAN. These lesions were partially reversed by treating mice with the FGF/VEGF receptor tyrosine kinase inhibitor PD173074. These findings suggest that high plasma FGF-2 levels may be an independent risk factor for precipitating HIVAN in young children.