z-logo
open-access-imgOpen Access
Sporadic amyotrophic lateral sclerosis (SALS) – skeletal muscle response to cerebrospinal fluid from SALS patients in a rat model
Author(s) -
Shruthi Shanmukha,
Narayanappa Gayathri,
Atchayaram Nalini,
Phalguni Anand Alladi,
T.R. Raju
Publication year - 2018
Publication title -
disease models and mechanisms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.327
H-Index - 83
eISSN - 1754-8411
pISSN - 1754-8403
DOI - 10.1242/dmm.031997
Subject(s) - amyotrophic lateral sclerosis , neurotrophic factors , glial cell line derived neurotrophic factor , skeletal muscle , biology , denervation , atrophy , endocrinology , extensor digitorum longus muscle , pathology , medicine , disease , receptor
Skeletal muscle atrophy is the most prominent feature of amyotrophic lateral sclerosis (ALS), an adult-onset neurodegenerative disease of motor neurons. However, the contribution of skeletal muscle to disease progression remains elusive. Our previous studies have shown that intrathecal injection of cerebrospinal fluid from sporadic ALS patients (ALS-CSF) induces several degenerative changes in motor neurons and glia of neonatal rats. Here, we describe various pathologic events in the rat extensor digitorum longus muscle following intrathecal injection of ALS-CSF. Adenosine triphosphatase staining and electron microscopic (EM) analysis revealed significant atrophy and grouping of type 2 fibres in ALS-CSF-injected rats. Profound neuromuscular junction (NMJ) damage, such as fragmentation accompanied by denervation, were revealed by α-bungarotoxin immunostaining. Altered expression of key NMJ proteins, rapsyn and calpain, was also observed by immunoblotting. In addition, EM analysis showed sarcolemmal folding, Z-line streaming, structural alterations of mitochondria and dilated sarcoplasmic reticulum. The expression of trophic factors was affected, with significant downregulation of vascular endothelial growth factor (VEGF), marginal reduction in insulin-like growth factor-1 (IGF-1), and upregulation of brain-derived neurotrophic factor (BDNF) and glial-derived neurotrophic factor (GDNF). However, motor neurons might be unable to harness the enhanced levels of BDNF and GDNF, owing to impaired NMJs. We propose that ALS-CSF triggers motor neuronal degeneration, resulting in pathological changes in the skeletal muscle. Muscle damage further aggravates the motor neuronal pathology, because of the interdependency between them. This sets in a vicious cycle, leading to rapid and progressive loss of motor neurons, which could explain the relentless course of ALS.This article has an associated First Person interview with the first author of the paper.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom