z-logo
open-access-imgOpen Access
Precision of tissue patterning is controlled by dynamical properties of gene regulatory networks
Author(s) -
Katherine Exelby,
Edgar Herrera-Delgado,
Lorena Garcia Perez,
Rubén PerezCarrasco,
Andreas Sagner,
Vicki Metzis,
Peter Sollich,
James Briscoe
Publication year - 2021
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.197566
Subject(s) - biology , gene regulatory network , computational biology , gene , regulation of gene expression , genetics , microbiology and biotechnology , gene expression
During development, gene regulatory networks allocate cell fates by partitioning tissues into spatially organised domains of gene expression. How the sharp boundaries that delineate these gene expression patterns arise, despite the stochasticity associated with gene regulation, is poorly understood. We show, in the vertebrate neural tube, using perturbations of coding and regulatory regions, that the structure of the regulatory network contributes to boundary precision. This is achieved, not by reducing noise in individual genes, but by the configuration of the network modulating the ability of stochastic fluctuations to initiate gene expression changes. We use a computational screen to identify network properties that influence boundary precision, revealing two dynamical mechanisms by which small gene circuits attenuate the effect of noise in order to increase patterning precision. These results highlight design principles of gene regulatory networks that produce precise patterns of gene expression.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom