
Loss of dmrt1 restores female fates in the absence of cyp19a1a but not rbpms2a/b
Author(s) -
Shan N. Romano,
Odelya Kaufman,
Florence Marlow
Publication year - 2020
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.190942
Subject(s) - biology , psychological repression , genetics , sexual differentiation , somatic cell , ovary , gonad , gene , endocrinology , gene expression
Sex determination and differentiation is a complex process regulated by multiple factors, including factors from the germline or surrounding somatic tissue. In zebrafish, sex-determination involves establishment of a bipotential ovary that undergoes sex-specific differentiation and maintenance to form the functional adult gonad. However, the relationships among these factors are not fully understood. Here we identify potential Rbpms2 targets and apply genetic epistasis experiments to decipher the genetic hierarchy of regulators of sex-specific differentiation. We provide genetic evidence that the critical female factor, rbpms2 is epistatic to the male factor dmrt1 in terms of adult sex. Moreover, Rbpms2's role in promoting female fates extends beyond repression of Dmrt1, as Rbpms2 is essential for female differentiation even in the absence of Dmrt1. In contrast, female fates can be restored in mutants lacking cyp19a1a and dmrt1, and prolonged in bmp15 mutants in the absence of dmrt1. Taken together this work indicates that cyp19a1a-mediated suppression of dmrt1 establishes a bipotential ovary and initiates female fate acquisition. Then, after female fate specification, Cyp19a1a regulates subsequent oocyte maturation and sustains female fates independent of Dmrt1 repression.