z-logo
open-access-imgOpen Access
A SMAD1/5-YAP signaling module drives radial glia self-amplification and growth of the developing cerebral cortex
Author(s) -
Sònia Najas,
Isabel Pijuan,
Anna EsteveCodina,
Susana Usieto,
Juan De Luigi Lemus,
An Zwijsen,
María L. Arbonés,
Elisa Martı́,
Gwenvaël Le Dréau
Publication year - 2020
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.187005
Subject(s) - corticogenesis , biology , neurogenesis , cerebral cortex , neuroscience , transcription factor , cortex (anatomy) , progenitor cell , microcephaly , progenitor , neural stem cell , microbiology and biotechnology , stem cell , genetics , gene
The growth and evolutionary expansion of the cerebral cortex are defined by the spatial-temporal production of neurons, which itself depends on the decision of radial glial cells (RGCs) to self-amplify or to switch to neurogenic divisions. The mechanisms regulating these RGC fate decisions are still incompletely understood. Here we describe a novel and evolutionarily conserved role of the canonical BMP transcription factors SMAD1/5 in controlling neurogenesis and growth during corticogenesis. Reducing the expression of both SMAD1 and SMAD5 in neural progenitors at early mouse cortical development caused microcephaly and an increased production of early-born cortical neurons at the expense of late-born ones, which correlated with the premature differentiation and depletion of the pool of cortical progenitors. Gain- and loss-of-function experiments performed during early cortical neurogenesis in the chick revealed that SMAD1/5 activity supports self-amplifying RGC divisions and restrain the neurogenic ones. Furthermore, we demonstrate that SMAD1/5 stimulate RGC self-amplification through the positive post-transcriptional regulation of the Hippo signaling effector YAP. We anticipate this SMAD1/5-YAP signaling module to be fundamental in controlling growth and evolution of the amniote cerebral cortex.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom