z-logo
open-access-imgOpen Access
Planar cell polarity: moving from single cells to tissue-scale biology
Author(s) -
Marek Mlodzik
Publication year - 2020
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.186346
Subject(s) - biology , morphogenesis , microbiology and biotechnology , organogenesis , cell polarity , convergent extension , developmental biology , polarity (international relations) , model organism , cell , neuroscience , embryogenesis , embryo , genetics , gastrulation , gene
Planar cell polarity (PCP) reflects cellular orientation within the plane of an epithelium. PCP is crucial during many biological patterning processes and for organ function. It is omnipresent, from convergent-extension mechanisms during early development through to terminal organogenesis, and it regulates many aspects of cell positioning and orientation during tissue morphogenesis, organ development and homeostasis. Suzanne Eaton used the power of Drosophila as a model system to study PCP, but her vision of, and impact on, PCP studies in flies translates to all animal models. As I highlight here, Suzanne's incorporation of quantitative biophysical studies of whole tissues, integrated with the detailed cell biology of PCP phenomena, completely changed how the field studies this intriguing feature. Moreover, Suzanne's impact on ongoing and future PCP studies is fundamental, long-lasting and transformative.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom