
Proximity labeling reveals novel interactomes in live Drosophila tissue
Author(s) -
Katelynn M. Mannix,
Rebecca M. Starble,
Ronit S. Kaufman,
Lynn Cooley
Publication year - 2019
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.176644
Subject(s) - biology , interactome , microbiology and biotechnology , biotinylation , cytoskeleton , rna interference , drosophila (subgenus) , protein–protein interaction , genetics , gene , biochemistry , cell , rna
Gametogenesis is dependent on intercellular communication facilitated by stable intercellular bridges connecting developing germ cells. During Drosophila oogenesis, intercellular bridges (referred to as ring canals) have a dynamic actin cytoskeleton that drives their expansion to a diameter of 10μm. While multiple proteins have been identified as components of ring canals (RCs), we lack a basic understanding of how RC proteins interact together to form and regulate the RC cytoskeleton. We optimized a procedure for proximity-dependent biotinylation in live tissue using the APEX enzyme to interrogate the RC interactome. APEX was fused to four different RC components (RC-APEX baits) and 55 unique high-confidence preys were identified. The RC-APEX baits produced almost entirely distinct interactomes that included both known RC proteins as well as uncharacterized proteins. The proximity ligation assay was used to validate close-proximity interactions between the RC-APEX baits and their respective preys. Further, an RNAi screen revealed functional roles for several high-confidence prey genes in RC biology. These findings highlight the utility of enzyme-catalyzed proximity labeling for protein interactome analysis in live tissue and expand our understanding of RC biology.