z-logo
open-access-imgOpen Access
Molecular and mechanical signals determine morphogenesis of the cerebral hemispheres in the chicken embryo
Author(s) -
Kara Garcia,
Wade G. Stewart,
M. Gabriela Espinosa,
Jason P. Gleghorn,
Larry A. Taber
Publication year - 2019
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.174318
Subject(s) - morphogen , forebrain , neuroepithelial cell , morphogenesis , biology , corticogenesis , embryogenesis , embryo , microbiology and biotechnology , embryonic stem cell , anatomy , neuroscience , developmental biology , genetics , central nervous system , gene
During embryonic development, the telecephalon undergoes extensive growth and cleaves into right and left cerebral hemispheres. Although molecular signals have been implicated in this process and linked to congenital abnormalities, few studies have examined the role of mechanical forces. In this study, we quantified morphology, cell proliferation and tissue growth in the forebrain of chicken embryos during Hamburger-Hamilton stages 17-21. By altering embryonic cerebrospinal fluid pressure during development, we found that neuroepithelial growth depends on not only chemical morphogen gradients but also mechanical feedback. Using these data, as well as published information on morphogen activity, we developed a chemomechanical growth law to mathematically describe growth of the neuroepithelium. Finally, we constructed a three-dimensional computational model based on these laws, with all parameters based on experimental data. The resulting model predicts forebrain shapes consistent with observations in normal embryos, as well as observations under chemical or mechanical perturbation. These results suggest that molecular and mechanical signals play important roles in early forebrain morphogenesis and may contribute to the development of congenital malformations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom