z-logo
open-access-imgOpen Access
Rorβ regulates selective axon-target innervation in the mammalian midbrain
Author(s) -
Haewon Byun,
Hae-Lim Lee,
Liu Hong,
Douglas Forrest,
Andrii Rudenko,
In-Jung Kim
Publication year - 2019
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.171926
Subject(s) - biology , midbrain , superior colliculus , neuroscience , thalamus , transcription factor , nucleus , axon guidance , axon , phenotype , central nervous system , genetics , gene
Developmental control of long-range neuronal connections in the mammalian midbrain remains unclear. We explored the mechanisms regulating target selection of the developing superior colliculus (SC). The SC is a midbrain center that directs orienting behaviors and defense responses. We discovered that a transcription factor, Rorβ, controls establishment of axonal projections from the SC to two thalamic nuclei: the dorsal lateral geniculate nucleus (dLGN) and the lateral posterior nucleus (LP). A genetic strategy used to visualize SC circuits revealed that in control animals Rorβ+ neurons abundantly innervate the dLGN but barely innervate the LP. The opposite phenotype was observed in global and conditional Rorb mutants: projections to the dLGN were strongly decreased, and projections to the LP were increased. Furthermore, overexpression of Rorb in the wild type showed increased projections to the dLGN and decreased projections to the LP. In summary, we identified Rorβ as a key developmental mediator of colliculo-thalamic innervation. Such regulation could represent a general mechanism orchestrating long-range neuronal connections in the mammalian brain.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom