Distinct roles and requirements forRaspathway signaling in visceral versus somatic muscle founder specification
Author(s) -
Yiyun Zhou,
Sarah E. Popadowski,
Emily Deustchman,
Marc S. Halfon
Publication year - 2019
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.15
H-Index - 36
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.169003
Subject(s) - biology , transcription factor , mesoderm , enhancer , psychological repression , signal transduction , microbiology and biotechnology , somatic cell , genetics , effector , gene , embryonic stem cell , gene expression
Pleiotropic signaling pathways must somehow engender specific cellular responses. In the Drosophila mesoderm, Ras pathway signaling specifies muscle founder cells from among the broader population of myoblasts. For somatic muscles, this is an inductive process mediated by the ETS-domain downstream Ras effectors Pointed and Aop (Yan). We demonstrate here that for the circular visceral muscles, despite superficial similarities, a significantly different specification mechanism is at work. Not only is visceral founder cell specification not dependent on Pointed or Aop, but Ras pathway signaling in its entirety can be bypassed. Our results show that de-repression, not activation, is the predominant role of Ras signaling in the visceral mesoderm and that accordingly, Ras signaling is not required in the absence of repression. The key repressor acts downstream of the transcription factor Lameduck and is likely a member of the ETS transcription factor family. Our findings fit with a growing body of data that point to a complex interplay between the Ras pathway, ETS transcription factors, and enhancer binding as a critical mechanism for determining unique responses to Ras signaling.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom