z-logo
open-access-imgOpen Access
Three-dimensional induction of dorsal, intermediate and ventral spinal cord tissues from human pluripotent stem cells
Author(s) -
Takenori Ogura,
Hideya Sakaguchi,
Susumu Miyamoto,
Jun Takahashi
Publication year - 2018
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.15
H-Index - 36
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.162214
Subject(s) - biology , induced pluripotent stem cell , anatomy , spinal cord , dorsum , stem cell , microbiology and biotechnology , embryonic stem cell , neuroscience , genetics , gene
The spinal cord contains more than 20 distinct subclasses of neurons that form well-organized neural circuits capable of sensing the environment and generating motor behavior. Although recent studies have described the efficient in vitro generation of spinal motor neurons, the induction of the spinal cord as a whole tissue has not been achieved. In the present study, we demonstrate three-dimensional (3D) induction of dorsal spinal cord-like tissues from human pluripotent stem cells. Our 3D spinal cord induction (3-DiSC) condition recapitulates patterning of the developing dorsal spinal cord and enables the generation of four types of dorsal interneuron marker-positive cell populations. By activating Shh signaling, intermediate and ventral spinal cord-like tissues are successfully induced. After dissociation of these tissues, somatosensory neurons and spinal motor neurons are detected and express neurotransmitters in an in vivo manner. Our approach provides a useful experimental tool for the analysis of human spinal cord development and will contribute to research on the formation and organization of the spinal cord, and its application to regenerative medicine.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom