z-logo
open-access-imgOpen Access
Defective osteoblast function in ICAP-1-deficient mice
Author(s) -
Daniel Bouvard,
Attila Aszódi,
Günter Kostka,
Marc R. Block,
Corinne AlbigèsRizo,
Reinhard Fässler
Publication year - 2007
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.000877
Subject(s) - biology , microbiology and biotechnology , integrin , osteoblast , extracellular matrix , collagen receptor , cell adhesion , cell adhesion molecule , receptor , in vitro , cell , biochemistry
The integrin receptor family plays important roles in cell-to-cell and cell-to-extracellular matrix interactions through the recruitment of accessory molecules. One of them, the integrin cytoplasmic domain-associated protein-1 (ICAP-1; also known as ITGB1BP1), specifically interacts with the cytoplasmic domain of the beta1 integrin subunit and negatively regulates its function in vitro. To address the role of ICAP-1 in vivo, we ablated the Icap-1 gene in mice. We report an unexpected role of ICAP-1 in osteoblast function during bone development. Icap-1-deficient mice suffer from reduced osteoblast proliferation and delayed bone mineralization, resulting in the retarded formation of bone sutures. In vitro studies reveal that primary and immortalized Icap-1-null osteoblasts display enhanced adhesion and spreading on extracellular matrix substrates, probably owing to an increase in beta1 integrin activation. Finally, we provide evidence that ICAP-1 promotes differentiation of osteoprogenitors by supporting their condensation through modulating the integrin high affinity state.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom