z-logo
open-access-imgOpen Access
Auxin treatment increases lifespan in Caenorhabditis elegans
Author(s) -
Julia A. Loose,
Arjumand Ghazi
Publication year - 2021
Publication title -
biology open
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.936
H-Index - 41
ISSN - 2046-6390
DOI - 10.1242/bio.058703
Subject(s) - biology , caenorhabditis elegans , auxin , microbiology and biotechnology , computational biology , genetics , gene
The auxin-inducible degradation system (AID) has proven to be a highly versatile technology for rapid, robust and reversible depletion of proteins in multiple model systems. In recent years, AID has been adapted into the nematode Caenorhabditis elegans as a tool for conditional protein knockdown. Numerous transgenic strains have been created that, upon auxin exposure, undergo protein inactivation in the worm germline or somatic tissues, both during development and in young adults. Since longevity assays often involve long-term gene- and protein-manipulation, the facility for spatiotemporally precise and extended protein removal makes AID a potentially highly valuable tool for aging biology. However, whether auxins themselves impact worm longevity has not been directly addressed. Here, we show that prolonged exposure to indole 3-acetic acid (IAA), the auxin used in worm AID studies, extends lifespan. We also report that two transgenic strains expressing Arabidopsis proteins that are key components of the AID platform are longer lived than wild-type animals. Together, our results highlight the necessity for exercising caution while utilizing AID for longevity studies and in interpreting the resulting data. This article has an associated First Person interview with the first author of the paper.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom