z-logo
open-access-imgOpen Access
Variations in oxidative stress and antioxidant defense level during different phases of hibernation in common Asian toad,Duttaphrynus melanostictus
Author(s) -
Prabhati Patnaik,
Debadas Sahoo
Publication year - 2021
Publication title -
biology open
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.936
H-Index - 41
ISSN - 2046-6390
DOI - 10.1242/bio.058567
Subject(s) - oxidative stress , hibernation (computing) , glutathione , lipid peroxidation , ascorbic acid , antioxidant , medicine , uric acid , catalase , torpor , endocrinology , biology , protein carbonylation , superoxide dismutase , biochemistry , food science , thermoregulation , state (computer science) , algorithm , computer science , enzyme
To assess redox status during hibernation with metabolic depression, oxidative stress parameters and antioxidant defense were assessed during different phases of hibernation including active period, hibernation, arousal, and post-arousal period, in the liver and brain tissues of Duttaphrynus melanostictus. We hypothesized low levels of oxidative stress and antioxidant defense during the hibernation period in comparison to the summer active period, due to hypometabolism and their subsequent increase during the arousal period following an increase in body temperature and metabolism. Contrary to our hypothesis, increased oxidative stress with significantly higher lipid peroxidation, protein carbonylation, oxidized glutathione (GSSG): glutathione (GSH) ratio, and elevated antioxidants defense consisting of higher catalase activity and high ascorbic acid content to control oxidative stress were found during hibernation. However, GSH and uric acid levels were found low with super oxide dismutase (SOD) activities at a steady level during hibernation. Supporting our hypothesis, increased oxidative stress with high lipid peroxidation and GSSG:GSH ratio were found during arousal from hibernation owing to increased oxygen consumption and rewarming. Augmented catalase and SOD activities and nonenzymatic antioxidants (GSH, ascorbic acid, and uric acid) level were found to counteract oxidative stress during arousal periods as it was expected. A steady level of protein carbonylation, indicating no oxidative damage during arousal from hibernation due to elevated antioxidant defense, shows the significance of hibernation to overcome food and water scarcity and cold climatic condition. Decrease in antioxidants levels accompanying coming down of lipid peroxidation, protein carbonylation, and GSSG:GSH ratio to their lower levels during the post-arousal period showing normalcy in redox status as it was during active period indicates controllability of oxidative stress in hibernating toads.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom