z-logo
open-access-imgOpen Access
Tests of the chromatographic theory of olfaction with highly soluble odors: a combined electroolfactogram and computational fluid dynamics study in the mouse
Author(s) -
David M. Coppola,
Emily Fitzwater,
Alex D. Rygg,
Brent A. Craven
Publication year - 2019
Publication title -
biology open
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.936
H-Index - 41
ISSN - 2046-6390
DOI - 10.1242/bio.047217
Subject(s) - odor , sensory system , olfaction , biology , mucus , olfactory system , electronic nose , sorption , nasal cavity , biological system , neuroscience , ecology , anatomy , chemistry , organic chemistry , adsorption
The idea that the vertebrate nasal cavity operates like a gas chromatograph to separate and discriminate odors, referred to herein as the 'chromatographic theory' (CT), has a long and interesting history. Though the last decade has seen renewed interest in the notion, its validity remains in question. Here we examine a necessary condition of the theory: a correlation between nasal odor deposition patterns based on mucus solubility and the distribution of olfactory sensory neuron odotypes. Our recent work in the mouse failed to find such a relationship even across large sorption gradients within the olfactory epithelium (OE). However, these studies did not test extremely soluble odorants or low odor concentrations, factors that could explain our inability to find supporting evidence for the CT. The current study combined computational fluid dynamics (CFD) simulations of odor sorption patterns and electro-olfactogram (EOG) measurements of olfactory sensory neuron responses. The odorants tested were at the extremes of mucus solubility and at a range of concentrations. Results showed no relationship between local odor sorption patterns and EOG response maps. Together, results again failed to support a necessary condition of the CT casting further doubt on the viability of this classical odor coding mechanism.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom