z-logo
open-access-imgOpen Access
Exposure to 50 Hz magnetic field at 100 µT exert no DNA damage in cardiomyocytes
Author(s) -
Yong Wang,
Xingfa Liu,
Yemao Zhang,
Baoquan Wan,
Jiangong Zhang,
Wei He,
Dong Hu,
Yang Yong,
Jinsheng Lai,
Mengying He,
Chen Chen
Publication year - 2019
Publication title -
biology open
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.936
H-Index - 41
ISSN - 2046-6390
DOI - 10.1242/bio.041293
Subject(s) - dna damage , in vivo , hsp70 , biology , western blot , in vitro , reactive oxygen species , myocyte , dna , carcinogen , andrology , microbiology and biotechnology , toxicology , medicine , endocrinology , heat shock protein , biochemistry , genetics , gene
The effects of exposure to magnetic fields (MFs) at electric frequencies (50-60 Hz) on carcinogenicity are still in debate. Whether exposure to MFs affects the heart is also a debated issue. This study aimed to determine whether exposure to extremely low frequency MFs (ELF-MFs) induced DNA damage in cardiomyocytes both in vitro and in vivo Human ventricular cardiomyocytes were exposed to 50 Hz ELF-MF at 100 µT for 1 h continuously or 75 min intermittently. The effects of the treatments were evaluated by DNA damage, redox status changes and relative signal molecular expression. Moreover, ten male Sprague-Dawley rats were exposed to a 50 Hz MF at 100 µT for 7 days, while another 10 rats were sham exposed. The protein levels of p53 and Hsp70 in heart tissue were analyzed by western blot. The results showed that exposure to ELF-MF did not induce DNA damage, changes to cell cycle distribution or increased reactive oxygen species level. No significant differences were detected in p53 and Hsp70 expression level between the ELF-MF and sham-exposure groups both in vitro and in vivo All these data indicate that MFs at power-frequency may not cause DNA damage in cardiomyocytes.This article has an associated First Person interview with the first author of the paper.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom