z-logo
open-access-imgOpen Access
Lithobates catesbeianus(American Bullfrog) oocytes: a novel heterologous expression system for aquaporins
Author(s) -
Jessica Kabutomori,
O. Beloto-Silva,
R. Ryan Geyer,
Raif MusaAziz
Publication year - 2018
Publication title -
biology open
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.936
H-Index - 41
ISSN - 2046-6390
DOI - 10.1242/bio.031880
Subject(s) - lithobates , bullfrog , biology , aquaporin , heterologous , zoology , microbiology and biotechnology , anatomy , ecology , genetics , gene
Xenopus laevis oocytes are a valuable tool for investigating the function of membrane proteins. However, regulations around the world, specifically in Brazil, render the import of Xenopus laevis frogs impractical, and, in some cases, impossible. Here, as an alternative, we evaluate the usefulness of the North American aquatic bullfrog Lithobates catesebeianus , which is commercially available in Brazil, for the heterologous expression of aquaporin (AQP) proteins. We have developed a method that combines a brief collagenase treatment and mechanical defolliculation for isolating individual oocytes from Lithobates ovaries. We find that they have a similar size, shape, and appearance to Xenopus oocytes and can tolerate and survive following injections with cRNA or water. Furthermore, surface biotinylation, western blot analysis, and measurements of osmotic water permeability ( P f ) show that Lithobates oocytes can express AQPs to the plasma membrane and significantly increase the P f of the oocytes. In fact, the P f values are similar to historical values gathered from Xenopus oocytes. Due to the presence of a mercury sensitive cysteine (Cys or C) in the throat of the water channel, the P f of oocytes expressing human (h) AQP1, hAQP1 FLAG [FLAG, short protein tag (DYKDDDDK) added to the N-terminus of AQP1], hAQP8, and rat (r) AQP9 was inhibited with the mercurial compound p-chloromercuribenzene sulfonate (pCMBS), whereas AQPs lacking this Cys - hAQP1 C189S mutant [residue Cys 189 was replaced by a serine (Ser or S)] and hAQP7 - were mercury insensitive. Contrary to previous studies with Xenopus oocytes, rAQP3 was also found to be insensitive to mercury, which is consistent with the mercury-sensitive Cys (Cys 11) being located intracellularly. Thus, we consider Lithobates oocytes to be a readily accessible system for the functional expression and study of membrane proteins for international researchers who do not currently have access to Xenopus oocytes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom