z-logo
open-access-imgOpen Access
Biosafety of biotechnologically important microalgae: intrinsic suicide switch implementation in cyanobacterium Synechocystis sp. PCC 6803
Author(s) -
Helena Čelešnik,
Anja Tanšek,
Aneja Tahirović,
Angelika Vižintin,
Jernej Mustar,
Vita Vidmar,
Marko Dolinar
Publication year - 2016
Publication title -
biology open
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.936
H-Index - 41
ISSN - 2046-6390
DOI - 10.1242/bio.017129
Subject(s) - biosafety , biology , cyanobacteria , computational biology , microbiology and biotechnology , bacteria , genetics
In recent years, photosynthetic autotrophic cyanobacteria have attracted interest for biotechnological applications for sustainable production of valuable metabolites. Although biosafety issues can have a great impact on public acceptance of cyanobacterial biotechnology, biosafety of genetically modified cyanobacteria has remained largely unexplored. We set out to incorporate biocontainment systems in the model cyanobacteriumSynechocystissp. PCC 6803. Plasmid-encoded safeguards were constructed using the nonspecific nuclease NucA fromAnabaenacombined with different metal-ion inducible promoters. In this manner, conditional lethality was dependent on intracellular DNA degradation for regulated autokilling as well as preclusion of horizontal gene transfer. In cells carrying the suicide switch comprising thenucAgene fused to a variant of thecopMpromoter, efficient inducible autokilling was elicited. Parallel to nuclease-based safeguards, cyanobacterial toxin/antitoxin (TA) modules were examined in biosafety switches. Rewiring ofSynechocystisTA pairsssr1114/slr0664andslr6101/slr6100for conditional lethality using metal-ion responsive promoters resulted in reduced growth, rather than cell killing, suggesting cells could cope with elevated toxin levels. Overall, promoter properties and translation efficiency influenced the efficacy of biocontainment systems. Several metal-ion promoters were tested in the context of safeguards, and selected promoters, including anrsBvariant, were characterized by beta-galactosidase reporter assay.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom