
Molecular Properties Important for Inhaled Anesthetic Action on Human 5-HT3A Receptors
Author(s) -
Renna J. Stevens,
Dirk Rüsch,
Paul Davies,
Douglas E. Raines
Publication year - 2005
Publication title -
anesthesia and analgesia/anesthesia and analgesia
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.404
H-Index - 201
eISSN - 1526-7598
pISSN - 0003-2999
DOI - 10.1213/01.ane.0000151720.36988.09
Subject(s) - medicine , anesthetic , action (physics) , receptor , pharmacology , computational biology , anesthesia , biology , physics , quantum mechanics
Although inhaled anesthetics have diverse effects on 5-hydroxytryptamine type 3 (5-HT3A) receptors, the mechanism accounting for this diversity is not understood. Studies have shown that modulation of 5-HT3A receptor currents by n-alcohols depends on molecular volume, suggesting that steric interactions between n-alcohols and their binding sites define their action on this receptor. Electrostatic interactions also play an important role in anesthetic action on other ligand-gated receptors. We aimed to determine the contribution of molecular volume and electrostatics in defining volatile anesthetic actions on 5-HT3A receptors. Human 5-HT3A receptors were expressed in, and recorded from, Xenopus oocytes using the two-electrode voltage-clamp technique. The effects of a range of volatile anesthetics, n-alcohols, and nonhalogenated alkanes on submaximal serotonin-evoked peak currents, and full serotonin concentration-response curves were defined. Volatile anesthetics and n-alcohols, but not alkanes, smaller than 0.120 nm3 enhanced submaximal serotonin-evoked peak currents whereas all larger agents reduced currents. Most compounds tested inhibited maximal serotonin-evoked peak currents to varying degrees. However, only agents smaller than 0.120 nm3 shifted the 5-HT3A receptor's serotonin concentration-response curve to the left, whereas larger anesthetics shifted them to the right. Modulation of human 5-HT3A-mediated currents by volatile anesthetics exhibits a dependence on molecular volume consistent with the n-alcohols, suggesting that both classes of agents may enhance 5-HT3A receptor function via the same mechanism. Furthermore, the enhancing but not inhibiting effects of anesthetic compounds on 5-HT3A receptor currents are modulated by electrostatic interactions.