z-logo
open-access-imgOpen Access
The General Anesthetic Propofol Inhibits Transmembrane Calcium Current in Chick Sensory Neurons
Author(s) -
Riccardo Olcese,
Cesare Usai,
E. Maestrone,
Mario Nobile
Publication year - 1994
Publication title -
anesthesia and analgesia/anesthesia and analgesia
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.404
H-Index - 201
eISSN - 1526-7598
pISSN - 0003-2999
DOI - 10.1213/00000539-199405000-00021
Subject(s) - medicine , propofol , anesthetic , sensory system , calcium , anesthesia , neuroscience , transmembrane protein , current (fluid) , pharmacology , receptor , biology , electrical engineering , engineering
The action of propofol on voltage-gated calcium channels was investigated in cultured dorsal root ganglion neurons from chick embryos. The Ca2+ current was measured by using the patch-clamp technique in whole cell configuration. Low-voltage-activated (LVA) and high-voltage-activated (HVA) Ca2+ currents were selected by means of appropriate stimulation protocols. Propofol (0.3 mM) inhibited the LVA T-type current by 80% (P < 0.001). The same concentration of propofol reduced the HVA Ca2+ current with a high variability (10%-75%). The inactivation time constant of the HVA current was also shortened to 50% by propofol. omega-Conotoxin and nifedipine were used to discriminate between the HVA N- and L-type current components. Only the L-type component was strongly depressed (75%) by propofol (P < 0.001); different effects on the HVA current might, therefore, reflect different percentages of L- and N-type channels in neurons. We conclude that propofol inhibits the T-type and L-type components of the Ca2+ current. This inhibition may play a role in the cardiovascular side effects clinically observed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here