Down-Regulation of Type I Runx2 Mediated by Dexamethasone Is Required for 3T3-L1 Adipogenesis
Author(s) -
You-You Zhang,
Xi Li,
Shu-wen Qian,
Liang Guo,
Hai-Yan Huang,
Qun He,
Yuan Liu,
Chun-Gu Ma,
Qi-Qun Tang
Publication year - 2012
Publication title -
molecular endocrinology
Language(s) - English
Resource type - Journals
eISSN - 1944-9917
pISSN - 0888-8809
DOI - 10.1210/me.2011-1287
Subject(s) - runx2 , chromatin immunoprecipitation , biology , adipogenesis , gene knockdown , adipocyte , cellular differentiation , 3t3 l1 , transcription factor , microbiology and biotechnology , endocrinology , promoter , gene expression , cell culture , biochemistry , genetics , adipose tissue , gene , mesenchymal stem cell
Runx2, a runt-related transcriptional factor family member, is involved in the regulation of osteoblast differentiation. Interestingly, it is abundant in growth-arrested 3T3-L1 preadipocytes and was dramatically down-regulated during adipocyte differentiation. Knockdown of Runx2 expression promoted 3T3-L1 adipocyte differentiation, whereas overexpression inhibited adipocyte differentiation and promoted the trans-differentiation of 3T3-L1 preadipocytes to bone cells. Runx2 was down-regulated specifically by dexamethasone (DEX). Only type I Runx2 was expressed in 3T3-L1 preadipocytes. Using luciferase assay and chromatin immunoprecipitation-quantitative PCR analysis, it was found that DEX repressed this type of Runx2 at the transcriptional level through direct binding of the glucocorticoid receptor (GR) to a GR-binding element in the Runx2 P2 promoter. Further studies indicated that GR recruited histone deacetylase 1 to the Runx2 P2 promoter which then mediated the deacetylation of histone H4 and down-regulated Runx2 expression. Runx2 might play its repressive role through the induction of p27 expression, which blocked 3T3-L1 adipocyte differentiation by inhibiting mitotic clonal expansion. Taken together, we identified Runx2 as a new downstream target of DEX and explored a new pathway between DEX, Runx2, and p27 which contributed to the mechanism of the 3T3-L1 adipocyte differentiation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom