z-logo
open-access-imgOpen Access
Unique ERα Cistromes Control Cell Type-Specific Gene Regulation
Author(s) -
Susan A. Krum,
Gustavo A. MirandaCarboni,
Mathieu Lupien,
Jérôme Eeckhoute,
Jason S. Carroll,
Myles Brown
Publication year - 2008
Publication title -
molecular endocrinology
Language(s) - Uncategorized
Resource type - Journals
eISSN - 1944-9917
pISSN - 0888-8809
DOI - 10.1210/me.2008-0100
Subject(s) - biology , chromatin immunoprecipitation , cell type , chromatin , regulation of gene expression , microbiology and biotechnology , gene expression , foxa1 , epigenetics , dna methylation , histone , cell , gene , genetics , promoter
Estrogens play an important role in normal physiology and in a variety of pathological states involving diverse tissues including breast and bone. The mechanism by which estrogens exert cell type- and disease-specific effects, however, remains to be explained. We have compared the gene expression profile of the MCF7 breast cancer cell line with that of the osteoblast-like cell line U2OS-ERalpha by expression microarrays. We find that fewer than 10% of the 17beta-estradiol (E2)-regulated genes are common to both cell types. We have validated this in primary calvarial osteoblasts. To dissect the mechanism underlying the cell type-specific E2 regulation of gene expression in MCF7 and U2OS-ERalpha cells, we compared the ERalpha binding sites on DNA in the two cell types by performing chromatin immunoprecipitation (ChIP) on genomic tiling arrays (ChIP-on-chip). Consistent with the distinct patterns of E2-regulated gene expression in these two cell lines, we find that the vast majority of ERalpha binding sites are also cell type specific and correlate both in position and number with cell type-specific gene regulation. Interestingly, although the forkhead factor FoxA1 plays a critical role in defining the ERalpha cistrome in MCF7 cells, it is not expressed in U2OS-ERalpha cells, and forkhead motifs are not enriched in the ERalpha cistrome in these cells. Finally, the ERalpha cistromes are correlated with cell type-specific epigenetic histone modifications. These results support a model for the cell type-specific action of E2 being driven primarily through specific ERalpha occupancy of epigenetically marked cis-regulatory regions of target genes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom