z-logo
open-access-imgOpen Access
ERa-Dependent Lethal Hyperactivation of the Anticipatory Unfolded Protein Response Induces Complete Regression Without Recurrence of Advanced Breast Cancer
Author(s) -
Darjan Duraki,
Matthew W. Boudreau,
Lawrence Wang,
Chengjian Mao,
Bingtao Tang,
Liqian Ma,
Edward J. Roy,
Timothy M. Fan,
Ben Ho Park,
Erik R. Nelson,
Paul J. Hergenrother,
David J. Shapiro
Publication year - 2021
Publication title -
journal of the endocrine society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.046
H-Index - 20
ISSN - 2472-1972
DOI - 10.1210/jendso/bvab048.2007
Subject(s) - breast cancer , cancer research , cancer , medicine , primary tumor , unfolded protein response , apoptosis , hyperactivation , estrogen receptor , metastasis , oncology , biology , biochemistry
Metastatic estrogen receptor α (ERα) positive breast cancer is presently incurable and most patients die within 7 years. From a medicinal chemistry program, we identified a novel small molecule that acts through ERα to kill breast cancer cells and often induces complete regression without recurrence of large, therapy-resistant primary breast tumors and of lung, bone, and liver metastases. We exploited our finding that estrogen-ERα activates an extranuclear tumor-protective, signaling pathway, the anticipatory unfolded protein response (UPR). We repurposed this tumor protective pathway by targeting it with the small molecule, ErSO. ErSO kills cancer cells by acting non-competitively through ERα to induce lethal hyperactivation of the anticipatory UPR (a-UPR), triggering rapid necrotic cell death. Using luciferase to image primary tumors and metastases containing lethal ERαD538G and ERαY537S mutations seen in metastatic breast cancer, oral and injected ErSO exhibited unprecedented antitumor activity. In mouse xenografts bearing large breast tumors, oral and injected ErSO induced complete regression (>115,000 fold mean regression) in about 45% of mice (18/39). Although durable response without treatment for 4-6 months was common, tumors that did recur remained fully sensitive to ErSO re-treatment. Consistent with the essential nature of the a-UPR pathway targeted by ErSO, in more than 100 tumor-bearing mice, we have never seen an ErSO-resistant tumor. In just 7 days, oral ErSO induced complete regression of most lung, bone, and liver metastases. ErSO is well-tolerated in mice and blood-brain-barrier penetrant. Injected ErSO induced profound regression of challenging brain tumors. On average, ErSO-treated tumors were >180-fold smaller than vehicle-treated tumors. Moreover, use of ErSO is not limited to breast cancer. With its unique mechanism of action through the a-UPR, ErSO eradicated orthotoptic ERα positive ovarian tumors that do not require estrogen for growth. These xenograft studies used human cancer cells in immune compromised mice and therefore did not exploit the known ability of inducers of necrotic cell death to activate immune cells and induce immunogenic cell death. Notably, medium from breast cancer cells killed by ErSO contained high levels of the established immune cell activators, HMGB1 and ATP, robustly activated mouse and human macrophages and increased macrophage migration. ErSO’s potent activity against advanced primary and metastatic ERα-positive breast cancers represents a paradigm shift in leveraging ERα for anticancer efficacy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here