z-logo
open-access-imgOpen Access
SUN-735 Functional Analysis of Testis-Specific Noncoding Genes in Estrogen-Dependent Transcription
Author(s) -
Ramesh Choudhari,
Barbara Yang,
Enrique Ramos,
Mina Zilaie,
Laura Sanchez-Michael,
Shrikanth S. Gadad
Publication year - 2020
Publication title -
journal of the endocrine society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.046
H-Index - 20
ISSN - 2472-1972
DOI - 10.1210/jendso/bvaa046.934
Subject(s) - biology , gene , gene expression , exon , genetics , chromatin , transcription (linguistics) , transcription factor , cancer research , philosophy , linguistics
Emerging studies have shown that germ cell (GC)-specific genes play critical roles in several cancers. The expression of these genes is tightly regulated and restricted to testis; however, many of them escape regulation and become aberrantly expressed in tumors. Interestingly, our genomic analysis suggests that several of these genes are long noncoding RNAs (lncRNAs) and are located at regions previously considered to be gene deserts in the human genome. In this regard, we used an integrated genomic approach to identify GC-lncRNA genes that are overexpressed in breast cancer. Further, by incorporating gene expression analysis from RNA-seq data from MCF-7 and T47D breast cancer cells, we generated a comprehensive list of estrogen-regulated GC-lncRNA genes. We hypothesize that GC-lncRNA genes regulate estrogen-dependent signaling in breast cancer. The selected genes: (a) CAERRC (Chromatin Associated Estrogen-Regulated RNA in Cancer, (b) LncRNA568, (c) LncRNA16 are primate-specific, and exclusively expressed in testis. All of them are regulated by estrogen, and their expression predicts poor outcome in ERα+ breast cancer patients. They have now been fully annotated (transcription start and stop site, 5’ cap, polyA tail, and exon/intron structure), and cloned. Further, we have created gene-specific KO MCF-7 cell lines using CRISPR to study their molecular roles. Our data suggest that these genes regulate estrogen-dependent gene expression and tumor growth in breast cancer cells. Genome-wide analysis of ERα binding and gene expression data indicate that they play a critical role in the estrogen-dependent transcription. Collectively, our results suggest that GC-genes, including CAERRC, LncRNA568, and LncRNA16, are excellent targets with prognostic and therapeutic potential in ER+ breast cancers.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here